8. Body Temperature

Heat: the total energy of molecular motion in a substance.
Temperature: a measure of the average energy of molecular motion in a substance.

- Body Temperature
- Measurement methods
 - Mercury thermometer
 - Electronic thermometer
 - Infrared thermometer
 - Zero-heat-flow
 - Dual-heat-flux

[Image: Thermally_Agitated_Molecule.gif]

Heat Transfer

Heat generation in a **fluid** (liquid or gas) that is caused by a variation in temperature resulting from the **movement of molecules**.

- Conduction
- Convection
- Radiation

Heating generation in a **solid** or between two **solids** in contact; the **molecules vibrate** but no matter moves.

[Image: before being bounced.png, after being bounced.png]

Thermal Infrared Images

- Mechanical energy \(\rightarrow\) thermal energy
- Electrical energy \(\rightarrow\) thermal energy

Archaic Method

Keeping head cool and foot warm to sleep well

Diagnosis of diseases by examining temperature difference between head and foot
Measurement Sites

1. Sublingual space
2. Axilla
3. Groin
4. Neck
5. Rectum
6. Esophagus
7. Tympanum
8. External auditory canal
9. Tympanum by non-contact thermometer
10. Nasal cavity
11. Bladder
12. Urine
13. Digestive tract by radio capsule
14. Thorax by zero-heat-flow thermometer
15. Forehead by zero-heat-flow thermometer

Body Temperature during Sleep

Mercury Thermometer

German physicist Daniel Gabriel Fahrenheit in 1724

Length of the mercury within the tube varies nearly linearly according to temperature of the mercury.

Narrow bore
Surface tension prevents mercury from flowing back the bulb through narrow bore.

Bulb
Calibrate marks
Capillary
Mercury volume
Sublingual temperature

Thermal Dilatability

When mercury gets warmer it expands. This increase in volume is measured by the scale on a mercury thermometer.

\[\alpha(T, p) = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p \]
\[\frac{\Delta V}{V} = -\frac{\Delta \rho}{\rho} \]
\[\alpha(T, p) = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T} \right)_p \]

\[\alpha \]: temperature coefficient

Density (g/cm³)

Water

0.95
0.97
0.99
1

Temperature [°C]
0
20
40
60
80
100

Density (g/cm³)

Mercury

13.3
13.4
13.5
13.6

Temperature [°C]
0
20
40
60
80
100
Thermoresistive Elements

Temperature coefficient: \[\alpha = \frac{1}{R} \frac{dR}{dT} \]

Resistivity: \[\rho \propto \exp \left(\frac{E_g}{2kT} \right) \]

A thermistor has relatively higher resolution and larger temperature coefficient, typically about -0.04/K

<table>
<thead>
<tr>
<th>Material</th>
<th>Temp. Coeff. (K(^{-1}))</th>
<th>Resistivity ((\Omega m))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platinum</td>
<td>3.9 \times 10^{-3}</td>
<td>10 \times 10^{-8}</td>
</tr>
<tr>
<td>Nickel</td>
<td>6.7 \times 10^{-3}</td>
<td>6.8 \times 10^{-8}</td>
</tr>
<tr>
<td>Aluminum</td>
<td>4.2 \times 10^{-3}</td>
<td>2.7 \times 10^{-8}</td>
</tr>
<tr>
<td>Tungsten</td>
<td>5.3 \times 10^{-3}</td>
<td>5.5 \times 10^{-8}</td>
</tr>
</tbody>
</table>

NTC and PTC Thermistors

- Thermally sensitive resistor
 - Electrical resistance is sensitive to temperature change
 - Metal oxide such as iron, nickel, cobalt, manganese, copper, 2～4 mixture, molded into various shapes at 1200～1500℃

- Measurement range = -50～350℃

- NTC (Negative Temperature Coefficient)
 - Inverse proportional relation between temperature change and resistance change

- PTC (Positive Temperature Coefficient)
 - Proportional relation between temperature change and resistance change

Significant Features

- High sensitivity
 - Larger resistor-temperature coefficient
 - = -2.8～-5.1%/℃

- Easy fabrication
 - Various shapes, miniaturization available

- Wide range of selectable resistor value
 - Tens of \(\Omega\)～several hundreds k\(\Omega\)

Characteristic Curves

NTC
- 100k\(\Omega\)
- 10k\(\Omega\)
- 1k\(\Omega\)

PTC
- 100\(\Omega\)
- 1k\(\Omega\)
- 10\(\Omega\)
- 100\(\Omega\)
- 1k\(\Omega\)
- 10k\(\Omega\)
- 100k\(\Omega\)
- 1M\(\Omega\)
- 10M\(\Omega\)

Temperature (℃)
Temperature Coefficient

- T_0: reference temperature, usually 298.15K (25°C)
- R_0: resistance at T_0
- B: thermistor constant

 $$B = \frac{E_g}{2k} = 1500 \sim 6000K$$
- α: temperature coefficient

 $$\alpha = \frac{1}{R} \frac{dR}{dT} = \frac{d}{dT} \left(\frac{B}{T} \right) = -\frac{B}{T^2}$$

Temperature-Voltage Converter

- R_2 and C_1 forms a LPF
- Time constant $\tau = CR = 220ms$

Linearization Circuits

- (a) Linearization can be achieved practically by adding this resistor

 $$R_1 = R \frac{B - 2T}{B + 2T}$$

- (b) Shunt resistor

Thermistor Output vs. Time

- Each graph represents the time course of hand-skin temperature in one subject.
 A thermistor is placed directly on the back of the hand with a piece of tape, and the hand inserts into a box pre-heated to 60°C.
Two Measurement Methods

Direct method
Real temperature measurement is complete at the time of the sensor equal to the body temperature (axilla = 10 min, mouth = 5 min)

Predictive method
Using an empirical curve, predict the final temperature value from the first 1 min or several tens of sec real measurement.

10 minutes later…

First 1 min real measurement

Thermistor Probes

- the thermistor is connected to a flexible insulated cable, and the connected part is also insulated and completely waterproof

- a glass-coated thermistor bead with bare lead wires. Bead diameter is about 0.3 mm

- a catheter-type probe

- a needle-type probe

Electronic Thermometers

Basal thermometer
- Range 32.00℃～42.00℃
- Accuracy ±0.05℃ (35.00～38.00℃)
 ±0.1℃ (32.00～34.99℃, 38.01～42.00℃)

Medical thermometer
- Range 32.0℃～42.0℃
- Accuracy ±0.1℃

BBT increases 0.3～0.5℃ in ovulation day and shifts from low temperature to high temperature

Thermocouple

- A thermoelectric sensor

- Seebeck effect = a temperature difference between two dissimilar electrical conductors or semiconductors produces a voltage difference between the two substances.

Sensitivity between 20°C to 40°C:
- 41 μV/K for copper/constantan
- 40 μV/K for chromel/alumel
- 6.1 μV/K for platinum/rhodium

Electromotive force depends on the temperature difference between two junctions

When the temperature of the reference junction T_2 is kept constant, electromotive force V varies only with the temperature of the measurement junction T_1.

A third metal C is connected to both metals A and B, and as long as two new junctions are at the same temperature, it provides the same electromotive force as that of the (a), regardless of the material of the third metal.
Thermocouple Circuit

Temperature of the measurement junction is measured as the reference junction temperature plus the temperature difference between junctions estimated by the electromotive force.

Temperature T_c of the reference junctions are kept stable at $0.01 \pm 0.0005^\circ$C by ice bath for terminal block.

Thermocouple IC

- 55% copper + 45% nickel
- 95% nickel + 2% manganese + 2% aluminium + 1% silicon
- 90% nickel + 10% chromium

Micro Thermocouple

- Junction is about 1 um, made of glass-coated microelectrodes.
- A tip of thin platinum wire 25 um in diameter was tapered, and a thin glass coating on the platinum was made leaving an exposed cone of platinum. A thin film of tellurium was formed, insulated by coating with a thin film of negative photoresist, and finally a gold film was formed to shield it from electromagnetic interference.

Thermopile

- Thermocouples in series or in parallel
- Reference point
- Hot junction
- Cold junction
The voltage V across a p-n junction at constant forward-bias current has **linear dependency** on the absolute temperature T.

Any diode or transistor can be a temperature sensor.

$$ I = A e^{qV - E_g} / kT $$

If the p-n junction in a diode or transistor is driven by different forward current levels I_1 and I_2, and voltages V_1 and V_2 are developed at these current levels

$$ V_1 - V_2 = kT q \ln \frac{I_1}{I_2} $$

I = forward bias current
A = constant depending on the geometry of the junction
q = electron charge
V = voltage across the junction
E_g = band gap energy
k = Boltzmann constant
T = absolute temperature

Two outputs V_1 and V_2 can be realized either by applying a square-wave current to a p-n junction, or using two matched devices operating at different current levels.

Infrared Radiometer

Thermal radiation power emitted from the human body is used to measure human body temperature.

Total power that enters the thermometer

$$ W = \varepsilon P(T_s) + (1 - \varepsilon) P(T_w) $$

ε: emissivity

Planck's radiation formula

$$ P(T) = \frac{C_1 \lambda^5}{\exp(C_2 / \lambda T) - 1} $$

λ: wavelength
T: absolute temperature
C_1 and C_2: universal constants

Reflection component

$\varepsilon P(T_s)$

Ambient radiation temperature T_w

Skin emissivity $= 0.97$ (8-14um), 3% of reflection from ambient radiation

Object surface temperature T_s

Thermal Detectors

Thermal Detectors include thermopiles, thermistors, bolometers, and pyroelectric devices.

When incident radiation is absorbed, the gas temperature increases and volume expands so that the diaphragm deforms. The displacement of the diaphragm is detected optically.

Pyroelectric material

Two electrodes as a capacitor

Thermopile

Serially connected thermocouples

When the temperature changes, charge appears and potential develops. The potential decays due to the discharge when the temperature balances. It can detect only rapid changes in incident radiation.

Ear thermometers

When incident radiation is absorbed, the gas temperature increases and volume expands so that the diaphragm deforms. The displacement of the diaphragm is detected optically.

Thermistor bolometer

When incident radiation is absorbed, the gas temperature increases and volume expands so that the diaphragm deforms. The displacement of the diaphragm is detected optically.

Golay cell

Flexible diaphragm and mirror
Photon Detectors

(a) Photoconductor

Carriers that are electron-hole pairs are generated by incident photons when the photon energy exceeds the band gap energy. Generated carriers create a photo current when a potential is applied externally. Carriers are also generated by thermal energy and this results in a dark current in the entire frequency range. Dark current can be reduced by cooling the detector.

(b) Photodiode

A p-n junction operated under reverse bias. At the boundary of the p and n region, there is a depletion region where carrier density is zero. When an electron-hole pair is generated in a depletion region by an incident photon, the electron and hole are separated and generate an electric current in the external circuit.

Infrared Skin Thermometer

Infrared Tympanic Thermometer

When the probe is correctly applied to the ear, tympanic temperature can be measured within 2 sec.

Infrared Tympanic Thermometer
Thermo Mirror
It captures the temperature via a built-in infrared sensor in a mirror. By looking at the mirror and your temperature will be measured automatically.

http://techon.nikkeibp.co.jp/english/NEWS_EN/20110117/188796/

Infrared Image Device
A matrix of similar microbolometers arranged in a 2D plane fabricated on a single silicon chip.

Focal plane array of thermal detectors
Indium interconnects
Silicon read-out array
charge-coupled device

Thermo Camera
Infrared thermography provides thermal images by thermo camera. It realizes a noncontact measurement.

To obtain a thermal image of an object, the surface temperature at many points on the object should be measured.

This is achieved by either mechanical scanning by means of moving mirrors or prisms, or by electronic scanning of the infrared detectors placed at the focal plane.

Raytheon, Radiance MS

Thermogram and Breast Cancer

Whole Body Thermogram

An abnormal thermogram is a significant indicator for breast cancer

A major mechanism involved with all degenerative disease is inflammation. Inflammation is present in precancerous and cancerous cells, in torn muscles, ligaments and arthritic joints. Heat is an indication of inflammation. Thermography measures inflammation and deficiencies in the body due to various dysfunctions such as diabetes, heart disease and some cancers.
Microwave Thermometer

Active microwave imaging method estimates local temperatures in the body from a reconstructed image of the temperature-dependent dielectric constant of the tissue. **Passive microwave** imaging method obtains thermal images from the deep tissue by thermal radiation in the microwave range.

- **Contact type**
- **Remote type**

Multi frequency microwave radiometer provides information about the temperature versus depth profile.

Schmidt-belt Heat Flow Sensor

Copper and constantan ribbons are connected in parallel at every half-turn, and thus loop current may be generated if a temperature gradient along this half-turn is developed.

- A copper ribbon is cut and applied to a paper-board strip
- Constantan ribbon is then wound over the copper
- Junctions are soldered

Nernst Effect Principle

When a heat flow sensor is attached to the object surface, natural heat flow distribution may be disturbed. To reduce this effect, the heat flow sensor should be thin enough → transverse thermomagnetic technique

When heat flows through a semiconductor plate to which a transverse magnetic field is applied, EMF is developed perpendicular to the direction of heat flow and the magnetic field.

- The advantage of using the Nernst effect is that the output EMF is proportional not to the temperature difference but to the temperature gradient. For a given heat flow, the temperature gradient is independent of the thickness, so thermal resistance can be reduced without reducing sensitivity.
- The disadvantage of using an external magnetic field is that this limits most applications of this technique, thus it is used only in thermal radiation detectors
Body Surface Measurement

The insulating effect due to the thermal resistance of the heat flow sensor is compensated for by placing a servo-controlled thermoelectric heat pump on the outer surface of the sensor.

The temperature at the inner surface of the sensor can be equated to the temperature at the uncovered skin adjacent to the sensor. In a steady state, heat flow toward the skin surface where the sensor is placed will be the same as that at the uncovered skin, as long as the temperatures at these two sites are the same.

\[H_{\text{corr}} = \frac{H_{\text{meas}} \Delta T_1}{\Delta T_2 - RH_{\text{meas}}} \]

- **Hₚ**: corrected heat flow.
- **Hₘₑₜₙ**: measured heat flow.
- **R**: thermal resistance
- **ΔT₁**: temperature difference between the uncovered skin adjacent to the sensor and an ambient reference
- **ΔT₂**: temperature difference between the area under the surface of the sensor and the ambient reference

Swallowable Capsule

- **Swallowable Capsule**
- **Body core temperature in the digestive tract**
- **Body core temperature in the digestive tract**

Quartz Crystal Resonator

- **Quartz Crystal Resonator**
- **Resonant frequency of a quartz resonator has a temperature coefficient (10 and 100ppm/K)**

<table>
<thead>
<tr>
<th>Case</th>
<th>Oscillation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 mm</td>
<td>7 mm</td>
</tr>
</tbody>
</table>

A crystal resonator can be excited by ultrasound, and its resonant frequency can be determined by using an ultrasonic coupling. When an ultrasound near the resonant frequency is applied, the resonator crystal is excited and after the applied wave is terminated, the resonation decays and emits an ultrasonic wave of the resonant frequency into the surrounding medium. The induced ultrasound can be detected at a distant site and thus this technique provides remote of temperature in a medium in which sound can propagate.

Thermistor-tipped Foley’s Bladder Catheter

- **Thermistor-tipped Foley’s Bladder Catheter**
- **Balloon inflation port**
- **Urinary drainage**

Its resonant frequency is about 40kHz with a temperature coefficient of about 3.2Hz/K. To measure temperature, the resonator is excited for about 0.4 s by applying an ultrasonic wave near the resonant frequency. The damped oscillations in the resonant frequency are measured. The absolute accuracy is about 0.1°C, with temperature resolution about 0.01°C. It has been shown that when the capsule is swallowed, temperature measurements can be performed from the abdominal skin surface.
Zero-heat-flow Thermometer

Measurement of deep body temperature from the skin surface

Temperature gradient exists between the skin surface and deep tissue. If the temperature gradient can be reduced to be zero, temperature measured on the surface will equal to deep tissue.

Two thermistors are separated by an insulating layer, and a heater. The temperature difference across the insulator is detected and controls the heater current in such a way that no temperature gradient exists across the insulating layer. Consequently, no heat flows across this layer so that the layer is equivalent to an ideal insulator. When the probe is applied to the skin surface it prevents heat loss from the surface and the skin temperature rises to the level of the deep tissue temperature.

Body core temperature is monitored at deeper sites of the body such as the rectum, esophagus, and bladder using indwelling thermometer probes.

Deep Body Thermometer

1.5 to 8 cm in diameter

Deep Body Thermometer

1.5 to 8 cm in diameter

The initial response time when the probe is applied to the exposed skin is 15 to 20 min. After thermal equilibrium is reached, the probe temperature follows physiological changes in core temperature.

Heat Flux Model

In equilibrium state

\[I = \frac{(T_1 - T_2)}{R_1} = \frac{(T_B - T_1)}{R} \]

\[T_B = T_1 + \frac{(T_1 - T_2)R}{R_1} \]
Dual-Heat-Flux Circuit Model

Body surface is covered with 2 kinds of heat insulators with thermal resistances \(R_1\) and \(R_2\).

\(R_S\) is the thermal resistance of the skin and subcutaneous tissue;

\(T_1\) and \(T_2\) are the skin temperatures beneath the insulator, and \(T_3\) and \(T_4\) are the temperatures at the upper surface of the insulator.

\[\begin{align*}
 T_B &= T_1 + \frac{(T_1 - T_3)R_S}{R_1} \\
 T_B &= T_2 + \frac{(T_2 - T_3)R_S}{R_2}
\end{align*} \]

Suppose both \(R_s\) identical.

Define \(K = \frac{R_1}{R_2}\) to describe sensor property.

When the ratio of the thermal resistance \(K\) is obtained, we can get the deep body temperature \(T_B\) from \(T_1 - T_4\).

\[K = \frac{(T_B - T_2)(T_3 - T_1)}{(T_B - T_1)(T_2 - T_4)} \]

\(K\) is obtained by a simulation experiment.

Estimation of K Value

The probe is set on a rubber sheet that is placed over the inner bottom of a copper vat floating in a water bath where temperature \(T_B\) is known. In equilibrium state, \(T_1 - T_4\) are measured.

Simulation Model

![Simulation Model Diagram](image)
Probe Structure

Copper cap
Cork
Sensor AD590
T3
T1 T2
T4
Copper ring

Probe Prototype