2. Motion and Force

- Motion sensors
 - Displacement sensor
 - Position sensor
 - Velocity sensor
 - Acceleration sensor

- Force sensors
 - Force plate
 - Piezoelectric sensor
 - Load sensor
 - Capacitive sensor
Objects of Measurement

• Linear Motion – time (s) and length (m)
 – Displacement (m)
 – Velocity (m/s)
 – Acceleration (m/s²)

• Rotation – angle (radian, degree)
 – Rotating angle (rad, deg)
 – Angular velocity (rad/s)
 – Angular acceleration (rad/s²)

• Force – mass × acceleration (1N=1kg m/s²)
 – Mass – quantity of matter (kg)
 – Weight – force acting on a mass under gravity (kgf)
 – Pressure – force exerted per unit area (N/m²)
Motions by Muscle Activities

Many kinds of body motions generated by muscular activities are objects of motion measurements, while passive motions due to externally applied forces are sometimes also of interest.

<table>
<thead>
<tr>
<th>Muscle Type</th>
<th>Contraction Speed (l_0/s)</th>
<th>Change of Length (%)</th>
<th>Tension (kgf/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skeletal muscle</td>
<td>4 ~ 24</td>
<td>−40 ~ +80</td>
<td>0.5 ~ 5</td>
</tr>
<tr>
<td>Cardiac muscle</td>
<td>1 ~ 2</td>
<td>0 ~ 50</td>
<td>0.4 ~ 1</td>
</tr>
<tr>
<td>Smooth muscle</td>
<td>0.1 ~ 3</td>
<td>−60 ~ +80</td>
<td>0.4 ~ 2</td>
</tr>
</tbody>
</table>

Note: l_0 = muscle length at rest.

The body motion generated by muscles depends both on the characteristics of the muscle as an actuator and on the mechanical characteristics of the body as the load to this actuator.
Displacement and rotation of a part of the body can be measured using various types of sensors, such as resistive **potentiometers**, photoencoders, **capacitive** and **magnetic sensors**.
Electrogoniometer

rotational motions of the body
angular displacements of a joint

recorder

DC excitation

Electrogoniometer

rotational potentiometer

conductive rubber

strain gauge

plastic endblocks

flexible goniometer

change in electrical resistance is proportional to the change in the angle between the longitudinal axes of the endblocks
Photo-potentiometers

A strip of **photoconductive material** placed between a **resistor** and **conductor** elements.

The p-n junction is nonconductive when a negative bias potential is applied to the p-type substrate, but the junction becomes conductive when a light spot falls on it.

A constant current is applied to the resistor element. When a light spot falls on the **photoconductive strip**, a potential output can be obtained between the conductor element and one end of the resistor element that is proportional to the distance between the light spot and the end of the resistor.
One-dimensional Image Sensor

Outputs of all photodiodes in a photodiode array are transferred simultaneously to CCD image sensor. CCD transfers the outputs from the photodiodes sequentially to the output port.
Rotary Encoder

Rotational displacement is converted into a pulse sequence, or a series of coded signals, by interrupting light beams at a plate with a slit pattern.
When the iron core slides through the transformer, a certain number of coil windings are affected by the proximity of the sliding core and thus generate a unique voltage output.

The voltage output is proportional to the iron core displacement when the core slides through the transformer.

\[D = M V_{out} \]

\(D \): displacement of the iron core
\(M \): sensitivity of the transformer
Displacement Sensors

Differential transformer: for measurement of small displacements

Capacitive sensor: for measurement of large displacements

Cylindrical type
Variable Reluctance Pickup

The change of the gap between cores causes a change in magnetic reluctance and results in a change in the inductance of the coil.

A coil with a ferrite sleeve is fitted into the bottom of the flask.

Disk weight produces isotonic load to the muscle. When the muscle shortens, the disk is shifted vertically and the magnetic reluctance is increased.
The Hall element generates a electromotive potential V_H along the direction perpendicular to the applied current I and magnetic field B.

$$V_H = R_H IB/d$$

R_H: Hall coefficient
d: element thickness
Different Configurations of Hall-effect Displacement Sensor

- **linear output**
- **Hall element**
- **highest sensitivity 10 Å order**
- **higher but asymmetric sensitivity**
- **linear output**
Magnetic Scale

A magnetic head detects the magnetization pattern on the moving element, just like a tape recorder head detects magnetization on a tape.

resolution = 0.2 mm
measurement range = 0.2 to 3 m
In Vivo Measurement of Myocardial Contraction

inserted into the ventricular wall

weight = 0.25g
Cardiac Ventricular Diameter

(a) Sonomicrometer

\[c = 1.5 \text{ mm/\mu s} \]

\[\sim 50 \text{ mm} \]

ultrasound crystal

(b) Sensor crystal arrangements

1

\[\sim 1 \mu s \]

2

\[200 \sim 1000 \mu s \]

\[\sim 30 \mu s \]
Structure of Sonomicrometer Sensor

glued to the crystal face to diffuse the ultrasonic beam
motion of the mitral valve is traced by the change in transit time between the transceiver crystal and the reflecting surface.
Focused Beam Ultrasonic Sensor

The spatial resolution along the ultrasound beam axis is the order of the wavelength of the ultrasound when the beam is narrow and the reflecting surface is perpendicular to the beam.

Spherically curved piezoelectric element

The beam width has a minimum at the focal distance \(f \).

Where the intensity of the sound is above half of that on the axis is called the full width at half maximum (FWHM)

\[
\text{FWHM} = \frac{1.41f\lambda}{2a}
\]

\(f \), focal distance
\(\lambda \), average wavelength
\(2a \), diameter of the crystal
Motion Capture System

The subject traverses the gait path and the motion is observed by using a video camera.

Diagram:
- Gait path center
- Start foot switch
- 1.85 m
- 4.3 m
- Gait path
- LED ring
- Marker illuminator
- Motion camera
- Camera interface
- Computer
- Graphic terminal
- Hard copy unit
- Monitor
Reflective Markers

Passive reflecting markers are attached to some specific positions of the body, such as the neck, shoulder, elbow, wrist, waist, knee, ankle, heel, and toe. Markers are illuminated by near-infrared light so that the measurement can be performed in a room illuminated by fluorescent light. The position of each marker is determined by a tracking algorithm automatically.
Motion Traces
Position-sensitive Detector

The principle is similar to that of the photopotentiometer. The position of a light spot in a two-dimensional (2D) space can be directly determined by a 2D position-sensitive detector.

tetralateral configuration
photoconductive layers is formed on one side of the device

duolateral configuration
two photoconductive layers on both sides of the device.
3D Position Determination

Measurement of a position in a 3D space uses three 1D position sensors.
Rotational Angle Measurement

When unpolarized light passes through a polarizing filter, only one plane of polarization is transmitted. Two polarizing filters used together transmit light differently depending on their relative orientation.

\[l = \left(\frac{l_0}{2} \right) \left(1 + \cos(2\omega t + 2\phi) \right) \]

\[l = \left(\frac{l_0}{2} \right) \left(1 + \cos(2\omega t + 2(\phi - \theta)) \right) \]
Displace Measurement by Inhomogeneous Magnetic Fields

If a magnetic pole is attached to an object, an inhomogeneous magnetic field is generated in the surrounding space. The position of the pole can be determined by the measurement of the magnetic field distribution.

(a) magnetic field is generated by a coil and detected by another coil

(b) a permanent magnet and a Hall effect element
3D Magnetic Source and Sensor

Three orthogonally arranged coils wound around a ferrite core.

Field coupling

Three-axis magnetic source

Driving circuits

Three coils in the source are excited sequentially

Computer

Amplifying circuits

Position and orientation measurements
Electromagnetic Velocity Sensors

When the magnetic flux across a coil is varied, an electromotive force proportional to the time derivative of the magnetic flux is induced.

When a conductor is moved in a magnetic field, an electromotive force proportional to the velocity of the motion is induced in the direction perpendicular to directions of the motion and the magnetic field.
Angular Velocity Sensors

angular velocity sensor generates an electromotive force roughly proportional to the rotational speed based on electromagnetic induction

D.C. tachometer
Stator = a magnet
Rotor = rotating coil

A.C. tachometer
Rotor = permanent magnet
Stator = output from the coil

Drag-cup tachometer

Two stators with coils are perpendicular to each other; A.C. excitation is applied to a coil, and the output is derived from another coil. A cup-shaped rotor made from a conductor is placed in between two stators. During rotation, eddy currents are induced in the cup, the current produces a magnetic field and the A.C. output of the excitation frequency is induced in the second coil. The output amplitude is proportional to the rotation speed. The phase is inverted when the direction of rotation of the cup is inverted.
Instantaneous Tachometer

A tachometer can be used to measure translational motion via a pulley.
Piezoelectric Gyroscope

“Tuning Fork”

Driving elements bend resonantly through electric excitation, then sensing elements swing. Under zero angular velocity, the sensing element does not produce a signal. When it rotates, a bending motion is induced, due to the Coriolis force, and consequently a signal proportional to angular velocity is induced in the sensing element.
Translational Accelerometer

range of ±5g, a dimension of 3.56 x 3.56 x 6.86 mm, and a weight of 0.5 g (Entran Devices, Inc)

An elastic beam is fixed to the base at one end and a seismic mass. When the mass is accelerated, a force proportional to the mass times the acceleration appears, and the beam bends elastically in proportion to the force.

The displacement of the seismic mass can be detected by different sensing principles, such as the piezoresistive, piezoelectric, capacitive and semiconductor strain-gauges.

Three beams with seismic masses are assembled on a base so that sensitive directions of these beams are arranged perpendicular to each other.
Bimorph Sensor

A beam with two piezoelectric elements of different polarities in order to produce a double or differential output. This configuration is called the bimorph.
Charge Amplifier

Measurement of the amount of the generated charge

\[Q = C_i V_i + C(V_i - V) \]

If \(A >> 1 \), and \(AC >> C_i \)

\[V = -AV_i \]

\(Q \): generated charge
\(C_i \): stray capacity
\(V_i \) and \(V \): input and output voltages
\(A \): gain of the operational amplifier

Output voltage is proportional to the generated charge regardless of the input capacitance
Capacitive Accelerometer

The displacement of the seismic mass is detected by the change of capacitance between the electrode on the mass and the fixed electrode.

Range ±0.1 g, seismic mass 14.7 mg, electrode gap 7μm, chip size 8.3 x 5.9 x 1.9mm, resonance frequency 126Hz.
Servo-controlled Accelerometer

The force exerted on the seismic mass due to acceleration is balanced by an electrostatic force so the seismic mass stays at the equilibrium point.
Angular Accelerometers

Angular acceleration is measured by a torque τ and the moment of inertia I around a fixed axis of rotation, i.e. τ/I. The momentum appeared at a rigid body supported by a shaft is measured by the displacement of the spring connected to it.

A liquid is used instead of a rigid body, the flow generated by angular acceleration is detected by the force exerted on a paddle.
Cantilever Beams

Rectangular cross-sectional beam

\[\delta = 4L^3 \frac{F}{Edh^3} \]

Circular cross-sectional beam

\[\delta = 64L^3 \frac{F}{3\pi Ed^4} \]

Beam made from thin wall pipe

\[\delta = 4L^3 \frac{F}{3\pi Ed^3t} \]

muscle contraction measurements

Young's module \(E \)
A cantilever is cemented to a quartz disk at one end, and has at the other end an air gap of 0.025 mm between the cantilever and the vacuum-sputtered film on the quartz disk. The displacement of the cantilever is less than 0.25 mm.
Leaf Spring

a form of spring, commonly used for the suspension in vehicles

Leaf Spring

optical method is used to detect a small displacement of a cantilever or spring

The tube carries a vane blocking the light beam partially

an isometric force recording system
Light Beams and Gratings

Fixed gratings

Moving gratings

250 lines/inch

two beams for differential operation so as to compensate the fluctuation of the light source

small displacement detection

Quartz halogen lamp

Fiberoptics

Photodetector 1

Photodetector 2

Grating 1

Grating 2

Grating 3

Grating 4

Working position
Single Light Beams

force sensor using gratings

mounting components in a microscope
Implantable Force Sensor

A bonded strain-gauge element is cemented onto a spring bronze plate, and glued with epoxy resin.

In vivo measurement of muscle contracting force.
Force Plates

gait analysis, stabilometry, and evaluation of athletic capacity

strain-gauge or piezoelectric cell
strain gauges are attached on four metal pipe pylons so that the compression, bend, and twist of the pylon can be detected.
Piezoelectric Force Sensor

Each sensor consists of three quartz disks sandwiched between the steel bases and provides outputs corresponding to the three orthogonal components of the applied force.
Stabilometry: clinical examination of stability of the posture
Stabilometer: instruments using such as force plate designed for stabilometry
It measures the locus of the point of application of the ground force using their
triangularly arranged vertical force sensors

\[F = F_1 + F_2 + F_3 \]

\[\bar{X} = \frac{b(F_3 - F_2)}{F} \]

\[\bar{Y} = \frac{aF_1 - c(F_2 + F_3)}{F} \]
Stabilometer Report

Subject stands still, the point of application of the ground force stays right below the center of gravity of the body.

60 sec
Eyes open and close

Normal athlete
Normal non-athlete
eye closed
eye closed

Perkinson’s disease
eye open
Shoe with Load Cell

The instrumented shoe measures natural locomotion without restricting the subject to a walkway.

Two load cells are attached at the toe and heel. Each load cell consists of an end support spring element on which strain gauges are mounted and provides outputs corresponding to the anterior-posterior and medial-lateral shears, axial compression, and torque.
A foam rubber sheet was sandwiched between two copper sheets so that the capacitance between the copper sheets varies when the rubber sheet is compressed by the applied load.
A black rubber mat having many small protrusions of pyramidal contours is placed on a glass plate. The distribution of the ground force exerted on the sole is called the foot-ground pressure pattern.